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ABSTRACT 

Effective masses and interface loads play a 

fundamental role in the context of the sine testing of a 

Spacecraft. In some cases, loads must be evaluated at 

the interface of an internal subsystem if equivalent 

quasi-static accelerations have to be monitored in order 

to not exceed design loads.  

Recently an alternative approach to determining 

experimentally effective masses has been developed by 

Thales Alenia Space and Top Modal. Using this 

effective mass, loads at Spacecraft and Subsystem 

interfaces can be evaluated if specific conditions are 

fulfilled. The theoretical background behind the entire 

method is presented as well as the numerical 

simulations done to validate it. Experimental validation 

has been carried out on a simple test case consisting of 

a clamped beam with a tip mass and on two main 

subsystems of an Instrument developed and 

successfully tested by Thales Alenia Space. 

 

1. INTRODUCTION 

Effective masses can be obtained from base excitation 

sine and random vibration tests using one of several 

well-known techniques such as the use of load cells 

(FMD), strain gages, coil current and the mass operator 

method. Each of these techniques has its advantages 

and drawbacks. 

Recently an alternative approach to determining 

effective masses has been developed by Thales Alenia 

Space and Top Modal. This approach involves 

performing an additional vibration test using a small 

shaker or impact hammer while taking advantage of the 

instrumentation used for the base excitation test. This 

additional test provides the effective flexibilities which 

combined with the effective transmissibilities of the 

base excitation test through a simple formula, lead to 

the effective masses of the spacecraft. 

In some cases, the effective masses and loads must be 

evaluated at the interface of an internal subsystem if 

equivalent quasi-static accelerations have to be 

monitored during the test in order to not exceed design 

loads. The conditions under which loads at the 

spacecraft interface can be considered as acting directly 

at subsystem interface are described. It is shown that 

these conditions may be satisfied in the case of a 

resonant subsystem which is weakly coupled with the 

remaining spacecraft structure. 

The background theory is first presented starting with a 

brief review of the modal approach including 

frequency response functions (FRF) and modal 

effective parameters (MEP). Existing methods for 

obtaining effective masses are discussed followed by a 

presentation of the new method. 

The elaboration of the interface loads, at both system 

and subsystem levels, is presented along with the 

assumptions used to establish the relationship between 

the two. A numerical simulation is used to illustrate 

and validate the approach. 

Finally, the experimental validation of the effective 

masses obtained through a complementary vibration 

test, as well as the validation of the subsystem loads, 

which was performed on a simple test case and a 

spacecraft instrument. 

The main results are presented and the lessons learned 

are discussed in the aim of identifying potential 

problems and suggesting solutions for future 

applications. 

 

2. THEORY 

2.1 Frequency Response Functions 

Consider the discretized structure shown in Fig. 1 with 

j junction DOF and i internal DOF subjected to 

prescribed motion at the junction and/or internal forces. 

 

 

Figure 1 : Structural DOF 

In the frequency domain, the relationship between the 

excitations and the responses can be expressed in terms 

of the following FRF : 
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where G, T and K are the dynamic flexibility, 

transmissibility and stiffness matrices respectively. See 

[1] for further details. 
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The above FRF can be defined using a modal approach 

where the internal motion of the structure is written as 

the sum of motion induced by the junction and the 

motion expressed in the basis of constrained junction 

normal modes 

  i ij j ik k= +u Ψ u Φ q  (2) 

where  is the matrix of static constraint modes and  

is the matrix of normal modes given by: 
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Applying the transformation of Eq. (2) leads to the 

following expressions for the FRF: 
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where ( )jj M  is the dynamic mass matrix given by: 
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kH and kT  are the amplification and transmissibility 

factors of mode k and are a function of the circular 

frequency k and viscous damping ratio k : 
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2.2 Modal Effective Parameters 

The three FRF matrices G, T and M have the same 

basic form expressing the contribution of each mode as 

the product of an amplification factor and a matrix of 

terms independent of  known as the modal effective 

parameters where 
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are the effective flexibility, transmissibility and mass 

matrices of mode k. These effective parameters are 

independent of the normalization of the eigenvectors 

and have the same dimension and units as the 

corresponding FRF. 

In the above expressions, km  is the generalized mass 

of mode k and kjL  is the matrix of participation 

factors defined by: 
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2.3 Effective Mass Estimation 

The dynamic mass of the spacecraft is of particular 

importance in the context of coupled analysis with the 

launch vehicle. Using mode superposition, the dynamic 

mass of Eq. (8) is expressed in terms of the effective 

masses which play a fundamental role in primary 

notching. Effective masses can be derived from base 

excitation sine and random vibration tests if forces at 

the interface are available since they are obtained from 

the ratio force/acceleration. Several techniques 

summarized in Fig. 2 may be used to obtain effective 

masses. 

 

Figure 2 : Force Measurement Techniques 

Direct measurement of the interface forces using load 

cells provides accurate results but can produce added 

mass and flexibility to the test fixture. Strain gages are 

less intrusive and relatively simple to install, but may 

produce less accurate results due to difficulties with 

calibration and sensitivity. Use of the coil current 

requires no text fixture, however accuracy is in general 

poor and only a single force along the excitation 

direction is available. 

The mass operator method combines the measured 

accelerations with the mass matrix of the finite element 

model condensed statically (Guyan) on the same set of 

sensors. 

The interface loads Fj are recovered by multiplying the 

condensed mass matrix Maa by the rigid body motion 

vector Rja and the measured accelerations au  

according to: 

 

 ( ) ( )j ja aa a =F R M u  (15) 

 

The accuracy of the mass operator method depends on 

the number of sensors as well as the quality of the 

finite element model. 

As an alternative to the above techniques, a new 

method to determine effective mass has been recently 



developed by Thales Alenia Space and Top Modal. 

Based solely on measurements, it involves combining a 

base excitation test with an additional test using an 

impact hammer or small shaker test. The additional test 

provides the force measurement needed to obtain the 

effective masses. 

To explain the new method, consider the expression for 

the effective mass in Eq. (13). Replacing the vector of 

participation factors by the vector of effective 

transmissibilities leads to the following expression for 

the effective masses defined as a function of the 

effective transmissibilities and effective flexibilities. 
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Eq. (16) expresses the entire effective mass matrix for 

mode k in terms of the drive-point effective flexibility 

,ii kG  and the corresponding vector of effective 

transmissibilities ,ij kT . 

From an experimental point of view, the effective 

transmissibilities are obtained from the base excitation 

test whereas the drive-point effective flexibilities are 

provided by the additional impact hammer test using 

one of the existing sensor locations as the drive-point. 

The effective transmissibilities and flexibilities are 

obtained from the respective FRF using standard modal 

identification tools such as the RTMVI method [2] 

implemented in PRIMODAL [3]. 

One advantage of this method is that the effective 

masses can be obtained using the existing 

instrumentation without any modification to the test 

fixture. Moreover the additional test with an impact 

hammer or shaker can be performed any time before or 

after the base excitation test. Several impact tests can 

be combined to obtain the effective masses in all three 

directions. The method assumes that the modes 

identified from the two tests are consistent in terms of 

frequency, mode shape and damping. This may not be 

strictly true in the case of nonlinear behavior of the 

structure (especially damping) and differences in the 

boundary conditions between the two tests. 

 

3. INTERFACE LOADS  

3.1 Introduction 

One of the goals of the study presented in this paper is 

to estimate loads at the interface of a subsystem 

(transfer point) from the loads experimentally 

evaluated at the spacecraft interface (drive point). From 

the modal superposition theory, the latter ones are 

computed by considering the effective masses of all the 

modes contained in the relevant frequency band. By the 

proposed approach, they are evaluated at the main 

resonance of a subsystem using the effective mass of 

the single mode evaluated experimentally by Eq. 16. 

The spacecraft is therefore assumed to behave like a 

SDOF system at each mode. To fulfill this assumption, 

the following conditions have to be satisfied: 

1. The mode in question must be weakly coupled 

with nearby modes.  

2. It must be a pure subsystem mode, without any 

participation of other S/C components. 

It can be demonstrated that the first condition can 

however be relaxed if nearby modes have low effective 

masses in order to not alter the main contribution to 

S/C interface loads coming from relevant subsystem 

resonance. Inversely, the second condition must be 

fully satisfied since, when two or more subsystems of a 

spacecraft resonate at the same frequency, it is not 

possible to discriminate the contributions of each 

subsystem from the S/C interfaces loads. This is 

however possible by analysis using MSC.Nastran 

v2018 which enables to compute effective mass per 

subsystem. 

 

3.2 S/C Interface Loads 

By modal superposition, the S/C interface force 

Fj
driveand moment M

j

drive
 along the driven axis are 

computed by: 
 

Fj
drive(ω)= (∑ Tk(ω)* M̃jj,k

N

k=1
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M
j

drive(ω)= (∑ Tk(ω)*M̃jj,̅k

N

k=1

) *uj̈(ω)    (18) 

 

where: 

▪ M̃jj,k = effective mass of mode k 

▪ M̃jj,̅k  is the  term 𝑗𝑗 of the effective mass matrix. 

▪ 𝑢𝑗̈ = drive point input acceleration 

▪ Tk = SDOF transmissibility function (Eq. 10) 

Eq. 17 accounts for the dynamic mass contributions of 

a truncated modal base containing N modes. It is 

recalled that, for each mode extracted by modal 

analysis, a full [6x6] matrix is computed. It contains 

dynamic mass (force/acc.) and inertia (moment/angular 

acc.) terms and cross-terms (moment/acc.). As the 

modal mass term related to the translation along the 

driven axis can be evaluated by performing one sine 

sweep and one impact test, the cross-axis term needs 

additional impact tests. In the frame of the main 

application case reported later in the paper, the moment 

was evaluated using the effective mass but by 

introducing the modal center of gravity hk,j: 
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Analytically, modal center of gravity (CoG) can be 

evaluated for each mode through the square root of the 

ratio between effective inertia and mass. This method 

presents the main disadvantage of using effective 

inertia which is related to the angular acceleration at 

the spacecraft base. Another formulation was needed 

during the test to evaluate the modal Cog and another 

approach whose validity was confirmed in the frame of 

the Instrument test discussed later was found. It was 

evaluated at the resonance r using internal response 

measurements as the center of acceleration by: 
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where P is the number of accelerometers installed on 

the subsystem for the test. As a main result of the 

present study, it is demonstrated that, at a S/S mode 

frequency and under specific assumptions, modal 

superposition is not needed and the interface shear 

force and bending moment are driven solely by the 

effective mass of the resonant subsystem. Eqs 17-19 

simplify then as follows: 

 

Fj
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r
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M
j
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r
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For a given mode, the interface force at drive point 

depends on damping (Qr factor), effective mass and 

base acceleration while the moment depends also on 

modal center of gravity. 

 

3.3 S/S Interface Loads  

When generated by a single subsystem, with no other 

spacecraft structural item involved, the S/C interface 

loads can be considered as acting directly at the 

subsystem interface. To demonstrate this load 

equivalence, the equations of motion are written 

differently from the usual way based on large mass 

acceleration input. 

For instance, the equation along the j-axis of the S/C 

can be written assuming the resultants of the inertia, 

viscous and elastic loads acting on spacecraft are 

“statically” balanced by the spacecraft/shaker interface 

loads for each frequency step swept by sine excitation. 

 

Fj
drive= Müj+Bu̇j+Kuj  (23) 

 

M, B and K are respectively the mass, modal damping 

and stiffness and matrices of the S/C as 𝑢𝑗,𝑢̇𝑗, 𝑢̈𝑗 the 

internal displacement, velocity and acceleration 

vectors. From elasticity theory, the static equilibrium 

condition of a system is still ensured if one of its parts, 

or subsystems, is removed and replaced by the 

equivalent resultant forces and moments applied to 

interface. Replacing the P subsystems of a spacecraft 

by their resultants 𝐹𝑗,𝑚 and denoting n the resonant 

subsystem, the resultant along the direction j force at 

drive point assumes the following form: 

 

Fj
drive(ω)= Fj,n(ω)+ ∑ Fj,m(ω)

P
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                (24) 

 

The contributions of the un-deformed structures can be 

gathered under the term Rj which is proved to be very 

small compared to the contribution related to the modal 

mass of the resonant subsystem.  

 

Rj(ωr)= ∑ Fj,m(ωr)

P

m=1
m≠n

≪ Fj,n(ωr)            (25) 

 

This allows demonstrating the load equivalence 

between the S/C base and the resonant S/S interface. 

 

Fj
drive(ωr) ≅  Fj,n(ωr)  (26) 

 

Concerning the bending moment, Eq. 26 is rearranged 

for taking into account two contributions for each 

subsystem. The first one is related to the moment 

generated by the subsystem at its interface and the 

second one due to the force times the arm hn 

corresponding to the distance between the transfer and 

drive points. Neglecting the contributions of the un-

deformed structures in front of the moments generated 

by the moving mass of subsystem n we have:  

 

M
j

drive(ωr)≅  M
j,n

(ωr)+ hn*F
j,n

(ωr)     (27) 

 

Moreover, if the arm hn is small enough, like for the 

full instrument application case, the force contribution 

becomes negligible and Eq. 11 simplifies further taking 

on the same form of Eq. 10. 

 

M
j

drive(ωr)≅Mj,n(ωr)                      (28) 

 

Using Eqs 23-24, the subsystem interface force and 

moment at resonance frequency become: 

 

Fj,n(ωr)≅Q
r
*M̃jj,r *uj̈(ωr)  (29) 

M
j,n

(ωr)≅Q
r
*M̃jj,r*hr,j

CoG
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3.4 Validation by Analysis  

The entire approach including experimental effective 

mass computation and subsystem interface load 

estimation was validated by demonstrating by analysis 

the following points: 



❑ Effective mass formulation (Eq. 16) 

❑ I/F loads computation by modal superposition 

❑ Load equivalence between S/C and S/S I/Fs 

❑ SDOF approximation for S/S I/F load estimation 

The spacecraft model used to perform the relevant 

analyses is schematically shown in Fig. 3.  

  

Figure 3 : S/C model used for approach validation 

It consists of a support panel carrying three main 

subsystems and its modal behavior is such that the 

main modes of each subsystem are uncoupled from 

those of the other subsystems. Nevertheless, the modal 

basis of the whole spacecraft is enriched by modes of 

smaller components and units which can alter the 

responses of the three subsystems. 

❑ Effective Mass Formulation 

To validate Eq. 16 two sine analyses were performed: 

the first one imposing 3-axis unit sine accelerations at 

S/C base and the second one injecting a unit load sine 

input on a dedicated point of the Subsystem#1. The 

latter analysis was aimed to simulate an impact test 

performed with a portable mini-shaker and was 

preferred, for practical issues, to transient analysis 

simulating a hammer impact test. Impact and sine test 

FRFs of the selected point are shown respectively in 

Fig. 4 and Fig. 5. 

 
Figure 4: Impact test FRF 

 
Figure 5: Sine test FRF 

The effective transmissibilities and flexibilities were 

identified using PRIMODAL. The IDEN module (Fig. 

6) dedicated to modal identification was used to 

determine the natural frequency, damping and effective 

parameters (MEP) from the FRF computed by 

MSC.Nastran. 

 
Figure 6 : PRIMODAL Iden module window view 

The modal parameters were then combined using Eq. 

16 to compute the effective mass given in Tab. 1. 

 Primodal MSC.Nastran 

Frequency (Hz) 37.2 37.2 

Eff. Transmissibility T̃ij,k 1.48  

Eff. Flexibility G̃ij,k (Kg-1s²) 5.7E-6  

Eff. Mass M̃jj,k (Kg) 44.3 45.6 

Table 1 : MEPs obtained by numerical simulations 

The effective mass computed by MSC.Nastran modal 

analysis is less than 3% higher.  

❑  I/F Load Computation by Modal Superposition 

Eqs 17-19 were validated by comparing the interface 

forces computed using MSC.Nastran to ones computed 

by a program coded in MATLAB. MSC.Nastran 

SOL111 was used to compute the interface forces of 

the S/C finite element model excited by 3-axis unit sine 

sweeps. The MATLAB program used the modal base 

extracted by MSC.Nastran in the relevant frequency 

band for superposing the contribution of all modes. 

Residual vectors, included by default in the 

MSC.Nastran simulation, were also taken into account 

and modal damping was set to 2% for the entire 

frequency band for both simulations. Forces and 

moments issued from X-axis lateral excitation are 

perfectly superimposed. The moment computed using 

the modal CoG given by Eq. 20 provides good 

correlation, in particular at the main resonance 

frequency as shown in Fig. 7. 

 

Figure 7 : S/C I/F Moment (Nastran vs Matlab) 

❑ Load Equivalence between S/C and S/S I/Fs 

The third main assumption to be validated concerned 

the load equivalence between S/C and S/S interfaces. 
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For this purpose, numerical simulations were 

performed using only MSC.Nastran. For the X-axis 

base excitation, S/C interface loads are compared to the 

ones at the interface of the Subsystem#1 in Fig. 8 and 

Fig. 9. At the first mode frequency (~37 Hz), the 

subsystem lateral force and bending moment are 

slightly lower than the S/C ones, respectively of 13% 

and 24%. These differences are due to the presence of 

the nearby mode at 41 Hz whose contribution alters the 

loads due to subsystem pure resonance. 

 
Figure 8 : S/C & S/S I/F Forces (Nastran) - X 

 
Figure 9 : S/C & S/S I/F Moments (Nastran) – X 

Along the Y-axis the mode occurs at 53 Hz and is not 

coupled with any other one. In this case forces are 

exactly the same whilst moments differ by less than 

4%. The results for the two driven axes are 

summarized in Tab. 2. 

Drive Freq. Load 
S/C I/F 

(Nastran) 

S/S#1 I/F 

(Nastran) 
 

X 37 Hz 
FX [daN] 1355 1178 -13.1% 

MY [daNm] 2259 1709 -24.3% 

Y 55 Hz 
FY [daN] 2837 2839 +0.1% 

MX [daNm] 3317 3187 -3.9% 

Table 2 : S/C & S/S interface loads 

These examples highlight clearly the importance of the 

assumptions made in §3.1 about the mode coupling and 

indicate that their relevance depends on the proximity 

of the nearby modes and their effective masses as well. 

❑ SDOF approximation for S/S I/F load estimation 

The SDOF approximation was validated by evaluating 

interface loads using Eqs 15-16 for both lateral 

excitations and comparing them to those obtained by 

MSC.Nastran (see Tab. 3). 

Drive Freq. S/S#1 I/F Nastran SDOF  

X 37 Hz 
FX [daN] 1178 1141 -3.1% 

MY [daNm] 1709 2078 +21.6% 

Y 55 Hz 
FY [daN] 2839 2793 -1.6% 

MX  [daNm] 3187 3266 +2.5% 

Table 3 : S/S#1 I/F loads (Nastran vs SDOF) 

The best results are obtained for the Y-axis where no 

mode coupling occurs. The SDOF approach leads to an 

over-estimation of the S/S interfaces loads of only 

2.5% in the worst case.  

 

4. BEAM TEST CASE 

The computation of the effective mass using the 

method described in §2 was validated experimentally 

by means of a simple specimen consisting of a steel 

beam welded on a plate at one end and carrying a tip 

mass shown in Fig. 10. By analysis, the first bending 

mode along the less stiff axis (X) is at 24.5 Hz whereas 

the second one along the stiffer axis (Y) is at 100.5 Hz.  

 

Figure 10: Mode shapes of beam lateral modes 

Two mechanical tests were performed: 

1. A sine test to determine effective transmissibility. 

2. An impact test to determine effective flexibility. 

The test configurations and the location of the 

accelerometers installed on beam are shown in Fig. 11. 

3.   

Figure 11: Beam sine and impact test configurations 

Being the most common and practical method, an 

impact hammer was used to apply the pulse excitation. 

The choice of the hammer tip is usually driven by the 

specimen mode frequencies to be excited. Indeed, the 

frequency content of the energy applied to the structure 

is mainly a function of the stiffness of the contacting 

surfaces. This stiffness affects the shape of the pulses 

which in turn determines the response frequency 

content. The typical responses associated with the 

different types of tip are plotted in Fig. 12. 

 

Figure 12: Hammer tips and corresponding responses 
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In order to obtain the most accurate measurements, soft 

(rubber) and medium (Teflon) hammer tips were used. 

However, the Teflon tip produced the noisy results 

highlighted in Fig. 13 and was hence discarded. 

 

Figure 13 : Soft and medium hammer tip results 

Concerning the sine test, the frequency of X-axis mode 

was not well correlated since the FE analysis 

underestimated the measured frequency by 23%. This 

difference was quite surprising for such a relatively 

simple system. The FRFs were found to be 

asymmetrical around the peaks thus yielding 

inconsistent damping values obtained with SINEPOST. 

Such nonlinear behavior, often encountered with very 

flexible structure, led to discarding this axis for the 

effective mass evaluation. For the Y-axis mode, the 

frequency was well predicted and transmissibility 

functions had typical symmetrical shapes (Fig. 14).  

 

Figure 14 : Y-axis sine test FRFs (beam test case) 

The impact test responses were not affected by noise 

and the mode was correctly identified at 102 Hz. The 

results of the PRIMODAL modal identifications of 

both sine sweep and impact tests are summarized in 

Tab. 4 along with the effective mass comparison. 

Test Freq. Damping MEP  

  (1/Qk) T̃ij,k / ²G̃ij,k  

Sine  102.0 Hz 0.0061 -1.06 

Hammer 101.9 Hz 0.0014 -2.06 kg-1 

Experimental Eff. Mass (Kg) 0.556 

FEM Eff. Mass (Kg) 0.562 

Table 4 : Effective mass comparaison (beam) 

The experimental effective mass was very close to the 

analytical value so fully validating the method. 

 

5. INSTRUMENT APPLICATION 

5.1 Introduction 

Following validation by analysis and experimentally 

through the simple test case application (see §3), the 

effective mass estimation was then applied to a full 

scale observation Instrument built by Thales Alenia 

Space and successfully qualified at the test center in 

Cannes. As discussed earlier, the general approach was 

developed with the aim of evaluating the interface 

loads of two main subsystems during the Instrument 

sine tests. The two subsystems are basically sandwich 

panels supported by tubular frames connected to the 

main supporting structure of the Instrument. For each 

subsystem, the effective modal parameters were 

evaluated at the point experiencing the highest modal 

displacements at the resonances. The mechanical test 

instrumentation plan was defined accordingly by 

installing accelerometers on the most suitable locations 

of the panels. 

The load equivalence demonstrated by analysis in §3.1 

was used to determine the interface loads and the test 

strategy was defined accordingly to not exceed the 

subsystem quasi-static loads. The mass operator 

method was also implemented for both subsystems 

since estimating loads with two methods ensured 

having redundancy and therefore reducing potential 

errors. 

 

5.3 Impact test set-up 

A soft tip was used for two reasons: to better excite the 

low-frequency modes and to avoid damaging the 

structure. A Dytran Dynapulse 5850B impact hammer 

equipped with a force sensor was used. The hammer 

includes a 3-position toggle switch located on the 

handle used to select three different sensitivities. The 

choice of sensitivity depends on the size of the test 

objects. The hammer was directly connected to the data 

acquisition system LMS ScadasLab. Although LMS 

transient acquisition software is not intended for this 

purpose, it allows recording the throughput of the tests 

performed with the impact hammer. Moreover, the 

software allowed selecting the sampling frequency of 

2048 Hz for the tests. 

Each test was repeated at least twice to ensure 

obtaining a single impulse force with no rebound. The 

impact tests were performed in the same spacecraft 

configuration as the sine test, i.e. on the shaker, in 

order to have the same boundary conditions. Note that 

depending on the specimen layout (i.e. lack of 

accessibility) and test facility constraints (i.e. 

cleanliness tent) the most suitable point for impact 

cannot always be chosen, resulting in a compromise 

that takes into account the above constraints. 

 

5.4 Results 

PRIMODAL was used to identify, after each sine run, 

the effective transmissibility from the FRF of the 

relevant accelerometer. The same procedure was used 

for all the impact tests performed. In the frame of the 

present study, the best results were always obtained 
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performing modal identification using only the FRF of 

the selected point for both tests. An alternative solution 

would be to use the full set of FRFs of the instrumented 

points, under condition of measuring consistent signal 

for all accelerometers. The effective mass was 

evaluated after each sine level run but, for practical 

issues, only the results related to Low Level (LL) and 

Qualification Level (QL) runs are reported. 

• X-axis drive / Subsystem#1 

The FRFs measured during the impact and sine tests 

are respectively shown in Fig. 15 and Fig. 16. 

 
Figure 15 : S/S#1 impact test FRF along X 

 
Figure 16 : S/S#1 sine test X FRFs (LL vs QL) 

The related modal parameters are reported in Tab. 5. 

S/S#1 (X) Sine LL Impact Test Sine QL  

f (Hz) 41.2 41.6 40.8  

Q 55 29 45  

MEP 1.52 0.054 Kg-1 1.66  

Meff (Kg) 43.0   51.3 +19% 

Table 5 : S/S#1 effective parameters (X-drive) 

The effective mass changes depending on the sine test 

input level. As usually observed during sine testing, 

damping increases at qualification level but remains 

lower than that derived from the impact test. Using Eqs 

29-30, the I/F loads are then computed for the 

qualification run and compared to those obtained with 

mass operator method for the same run in Tab. 6.  

S/S#1 (X) SDOF Mass-Op  

Q 45   

Meff (Kg) 51.3   

FX (daN) 2309 2042 -12% 

Hcog (m) 1.66 1.50 -12% 

MY (daNm) 3839 3054 -20% 

Table 6 : S/S#1 I/F loads (X-drive) 

Notice that the CoG height error and force error are 

combined to produce the moment error. Concerning the 

mass operator method, the evaluation of the modal 

CoG was not needed to determine moments. It was 

computed afterward by the ratio moment/force and 

reported only for comparison purposes.   

• X-axis drive / Subsystem#2 

The impact test showed an unusual behavior of the 

structure (Fig. 17) with two nearby modes instead of 

the single one observed during the sine sweep (Fig. 

18). This affected the PRIMODAL identification 

leading to inconsistent results for the first peak at 52 

Hz, the closest one to the actual resonance frequency.  

 

Figure 17 : S/S#2 impact test FRF along X 

 

Figure 18 : S/S#2 sine test X FRFs (LL vs QL) 

For the second peak, the modal flexibility could be 

correctly identified resulting in the effective masses 

given in Tab. 7. 

S/S#2 (X) Sine LL Impact Test Sine QL  

f (Hz) 52.6 55.3 52.4  

Q 16 18 16  

MEP 1.74 0.047 Kg-1 1.35  

Meff (Kg) 65.0   39.1 -40% 

Table 7 : S/S#2 effective parameters (X-drive) 

A significant difference of the effective transmissibility 

measured during the sine tests was observed. In 

particular, the low level produced erroneous results 

since the corresponding effective mass was close to the 

rigid mass of the subsystem. The results of the 

intermediate level run were found to be more similar to 

those of the qualification level.  The interface loads are 

compared in Tab. 8. 

S/S#2 (X) SDOF Mass-Op  

Q 16   

Meff (Kg) 39.1   

FX (daN) 606 697 +15% 

Hcog (m) 1.18 1.04 -12% 

MY (daNm) 713 728 +2% 

Table 8 : S/S#2 I/F loads (X-drive) 

Unlike Subsystem#1, mass operator method over-

estimates the shear force given by the SDOF approach 

as the moment is almost the same. 
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• Y-axis drive / Subsystem#1 

The modal parameters are reported in Tab. 9. 

S/S#1 (Y) Sine LL Impact Test Sine QL  

f (Hz) 55.9 58.7 55.8  

Q 27 15 14  

MEP 1.0 0.0157 Kg-1 1.26  

Meff (Kg) 63.7   101.2 +59% 

Table 9 : S/S#1 effective parameters (Y-drive) 

The interface loads are given in Tab. 10 showing that 

mass operator over-estimates SDOF approach. 

S/S#1 (Y) SDOF Mass-Op  

Q 14   

Meff (Kg) 101.2   

FY (daN) 1419 1668 +18% 

Hcog (m) 0.99 1.06 +7% 

MX (daNm) 1399 1765 +26% 

Table 10 : S/S#1 I/F loads (Y-drive) 

• Y-axis drive / Subsystem#2 

The related modal parameters are reported in Tab. 11. 

S/S#2 (Y) Sine LL Impact Test Sine QL  

f (Hz) 42.8 43.4 41.4  

Q 21 10 12  

MEP 1.01 0.038 Kg-1 1.33  

Meff (Kg) 26.9   46.6 +73% 

Table 11 : S/S#2 effective parameters (Y-drive) 

The interface loads are given in Tab. 12. 

S/S#2 (Y) SDOF Mass-Op  

Q 12   

Meff (Kg) 46.6   

FY (daN) 548 835 +52% 

Hcog (m) 1.09 1.02 -6% 

MX (daNm) 597 851 +43% 

Table 12 : S/S#2 I/F loads (Y-drive) 

The interface loads derived by using the sine low level 

results are very similar. This occurs as a result of the 

same increase of both effective mass and damping. A 

similar situation was observed for S/S#1 under X-axis 

excitation. 

 

6. CONCLUSIONS 

The new method for determining effective masses has 

been validated using a simple beam structure using its 

mode along the stiffer axis. Along the other lateral axis 

the sine responses showed a nonlinear behaviour 

leading to incorrect modal identification. Applied to 

the Instrument, a more complex structure, the new 

technique worked well in most cases. However, for one 

of the subsystems, the impact test provided inconsistent 

results along the less stiff axis thus leading to 

inconsistent results. 

Regarding interface loads, some discrepancies using 

the mass operator method were observed. The mass 

operator method was established using an uncorrelated 

FE model which was found to be more flexible than the 

actual specimen leading to inconsistencies in the 

mathematical representation most likely affecting the 

mass operator results. Nevertheless, the sine test 

strategy took into account such differences in a 

conservative way, thus allowing to successfully 

qualifying the Instrument. 

The robustness of the full approach depends strongly 

on the proper implementation of the impact test and the 

quality of the measurements for both tests. Several 

impact tests for each direction must be performed to 

cope with uncertainties related to impact location, 

signal acquisition parameters and reliability. The type 

of structure also plays an important role since a simple 

specimen can lead to the same problems as a complex 

structure. The test execution should also take into 

account test facility constraints and specimen layouts. 

 

7. ABBREVIATIONS AND ACRONYMS 

CoG Centre of Gravity 

FE Finite Element 

FRF Frequency Response Function 

I/F Interface 

LL Low Level 

MEP Modal Effective Parameter 

Qk Amplification factor for mode k 

QL Qualification Level 

S/C Spacecraft 

SDOF Single Degree of Freedom 

S/S Subsystem 

T SDOF system transmissibility function 
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